BiocNeighbors 1.20.1
The BiocNeighbors package implements a few algorithms for exact nearest neighbor searching:
Both KMKNN and VP-trees involve a component of randomness during index construction, though the k-nearest neighbors result is fully deterministic1 Except in the presence of ties, see ?"BiocNeighbors-ties"
for details..
The most obvious application is to perform a k-nearest neighbors search. We’ll mock up an example here with a hypercube of points, for which we want to identify the 10 nearest neighbors for each point.
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
The findKNN()
method expects a numeric matrix as input with data points as the rows and variables/dimensions as the columns.
We indicate that we want to use the KMKNN algorithm by setting BNPARAM=KmknnParam()
(which is also the default, so this is not strictly necessary here).
We could use a VP tree instead by setting BNPARAM=VptreeParam()
.
fout <- findKNN(data, k=10, BNPARAM=KmknnParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 215 4869 1671 8516 2223 4847 2849 3539 6404 1723
## [2,] 1370 5481 2139 6450 5206 1401 8662 9263 5423 5404
## [3,] 9153 9708 9967 6620 9077 1289 750 9512 3120 1773
## [4,] 5172 393 3072 2418 8917 6265 6345 3287 6112 4873
## [5,] 8296 31 9918 999 6239 3744 6286 743 8872 3950
## [6,] 3779 5647 9914 6944 4968 9574 1901 9654 3572 1151
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.9960013 1.0243851 1.0488344 1.0599886 1.0741515 1.101224 1.113522
## [2,] 1.0267251 1.0665891 1.0689259 1.0878683 1.1056311 1.111385 1.111674
## [3,] 0.9276706 0.9343985 0.9356513 0.9637536 1.0519104 1.059307 1.070900
## [4,] 0.8331970 0.9006124 0.9730938 0.9887161 1.0245950 1.031027 1.037998
## [5,] 0.8358488 0.9577742 0.9985025 1.0010155 1.0260831 1.055337 1.064033
## [6,] 0.8918223 0.9559115 0.9602496 0.9720945 0.9879264 1.013817 1.018813
## [,8] [,9] [,10]
## [1,] 1.115204 1.123202 1.125723
## [2,] 1.122955 1.123371 1.129597
## [3,] 1.073773 1.077813 1.077898
## [4,] 1.050551 1.053290 1.053748
## [5,] 1.064381 1.066609 1.066986
## [6,] 1.032807 1.045535 1.051594
Each row of the index
matrix corresponds to a point in data
and contains the row indices in data
that are its nearest neighbors.
For example, the 3rd point in data
has the following nearest neighbors:
fout$index[3,]
## [1] 9153 9708 9967 6620 9077 1289 750 9512 3120 1773
… with the following distances to those neighbors:
fout$distance[3,]
## [1] 0.9276706 0.9343985 0.9356513 0.9637536 1.0519104 1.0593071 1.0708998
## [8] 1.0737726 1.0778131 1.0778981
Note that the reported neighbors are sorted by distance.
Another application is to identify the k-nearest neighbors in one dataset based on query points in another dataset. Again, we mock up a small data set:
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
We then use the queryKNN()
function to identify the 5 nearest neighbors in data
for each point in query
.
qout <- queryKNN(data, query, k=5, BNPARAM=KmknnParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 3312 1272 550 1413 1860
## [2,] 2201 1835 9311 2351 679
## [3,] 181 9393 6718 9267 652
## [4,] 983 3779 3454 7758 755
## [5,] 6206 6997 6349 3026 4150
## [6,] 550 3909 9592 4412 2373
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9256829 0.9329185 0.9370799 0.9428395 0.9468555
## [2,] 1.1213506 1.1351115 1.1472850 1.1570469 1.1809814
## [3,] 0.9454082 0.9683747 1.0147419 1.0253117 1.0294208
## [4,] 0.7713852 0.8660857 0.9441982 0.9496934 0.9758834
## [5,] 0.6843861 0.8097158 0.8875205 0.9129252 0.9228417
## [6,] 0.8673658 0.9013602 0.9284009 0.9317994 0.9616679
Each row of the index
matrix contains the row indices in data
that are the nearest neighbors of a point in query
.
For example, the 3rd point in query
has the following nearest neighbors in data
:
qout$index[3,]
## [1] 181 9393 6718 9267 652
… with the following distances to those neighbors:
qout$distance[3,]
## [1] 0.9454082 0.9683747 1.0147419 1.0253117 1.0294208
Again, the reported neighbors are sorted by distance.
Users can perform the search for a subset of query points using the subset=
argument.
This yields the same result as but is more efficient than performing the search for all points and subsetting the output.
findKNN(data, k=5, subset=3:5)
## $index
## [,1] [,2] [,3] [,4] [,5]
## [1,] 9153 9708 9967 6620 9077
## [2,] 5172 393 3072 2418 8917
## [3,] 8296 31 9918 999 6239
##
## $distance
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9276706 0.9343985 0.9356513 0.9637536 1.051910
## [2,] 0.8331970 0.9006124 0.9730938 0.9887161 1.024595
## [3,] 0.8358488 0.9577742 0.9985025 1.0010155 1.026083
If only the indices are of interest, users can set get.distance=FALSE
to avoid returning the matrix of distances.
This will save some time and memory.
names(findKNN(data, k=2, get.distance=FALSE))
## [1] "index"
It is also simple to speed up functions by parallelizing the calculations with the BiocParallel framework.
library(BiocParallel)
out <- findKNN(data, k=10, BPPARAM=MulticoreParam(3))
For multiple queries to a constant data
, the pre-clustering can be performed in a separate step with buildIndex()
.
The result can then be passed to multiple calls, avoiding the overhead of repeated clustering2 The algorithm type is automatically determined when BNINDEX
is specified, so there is no need to also specify BNPARAM
in the later functions..
pre <- buildIndex(data, BNPARAM=KmknnParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
The default setting is to search on the Euclidean distance.
Alternatively, we can use the Manhattan distance by setting distance="Manhattan"
in the BiocNeighborParam
object.
out.m <- findKNN(data, k=5, BNPARAM=KmknnParam(distance="Manhattan"))
Advanced users may also be interested in the raw.index=
argument, which returns indices directly to the precomputed object rather than to data
.
This may be useful inside package functions where it may be more convenient to work on a common precomputed object.
sessionInfo()
## R version 4.3.2 Patched (2023-11-13 r85521)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocParallel_1.36.0 BiocNeighbors_1.20.1 knitr_1.45
## [4] BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.2 rlang_1.1.2 xfun_0.41
## [4] jsonlite_1.8.8 S4Vectors_0.40.2 htmltools_0.5.7
## [7] stats4_4.3.2 sass_0.4.8 rmarkdown_2.25
## [10] grid_4.3.2 evaluate_0.23 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
## [16] bookdown_0.37 BiocManager_1.30.22 compiler_4.3.2
## [19] codetools_0.2-19 Rcpp_1.0.11 lattice_0.22-5
## [22] digest_0.6.33 R6_2.5.1 parallel_4.3.2
## [25] bslib_0.6.1 Matrix_1.6-4 tools_4.3.2
## [28] BiocGenerics_0.48.1 cachem_1.0.8
Wang, X. 2012. “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.” Proc Int Jt Conf Neural Netw 43 (6): 2351–8.
Yianilos, P. N. 1993. “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces.” In SODA, 93:311–21. 194.