45 #define MUL16(a,b) ((a) * (b))
47 #define CMAC(pre, pim, are, aim, bre, bim) \
49 pre += (MUL16(are, bre) - MUL16(aim, bim));\
50 pim += (MUL16(are, bim) + MUL16(bre, aim));\
55 # define REF_SCALE(x, bits) (x)
59 # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
75 for (i = 0; i < (n/2); i++) {
76 alpha = 2 * M_PI * (float)i / (
float)n;
89 double tmp_re, tmp_im, s, c;
94 for (i = 0; i < n; i++) {
98 for (j = 0; j < n; j++) {
99 k = (i * j) & (n - 1);
107 CMAC(tmp_re, tmp_im, c, s, q->
re, q->
im);
122 for (i = 0; i < n; i++) {
124 for (k = 0; k < n/2; k++) {
125 a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
126 f = cos(M_PI * a / (
double)(2 * n));
141 for (k = 0; k < n/2; k++) {
143 for (i = 0; i < n; i++) {
144 a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
145 s += input[i] * cos(a);
154 static void idct_ref(
float *output,
float *input,
int nbits)
161 for (i = 0; i < n; i++) {
163 for (k = 1; k < n; k++) {
164 a = M_PI*k*(i+0.5) / n;
165 s += input[k] * cos(a);
167 output[i] = 2 * s / n;
170 static void dct_ref(
float *output,
float *input,
int nbits)
177 for (k = 0; k < n; k++) {
179 for (i = 0; i < n; i++) {
180 a = M_PI*k*(i+0.5) / n;
181 s += input[i] * cos(a);
202 for (i = 0; i < n; i++) {
203 double e = fabsf(tab1[i] - (tab2[i] / scale)) /
RANGE;
206 i, tab1[i], tab2[i]);
220 "-h print this help\n"
225 "-i inverse transform test\n"
226 "-n b set the transform size to 2^b\n"
227 "-f x set scale factor for output data of (I)MDCT to x\n"
242 int main(
int argc,
char **argv)
259 int fft_nbits, fft_size;
266 c =
getopt(argc, argv,
"hsimrdn:f:c:");
303 fft_size = 1 << fft_nbits;
357 for (i = 0; i < fft_size; i++) {
382 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
386 fft_ref(tab_ref, tab1, fft_nbits);
392 fft_size_2 = fft_size >> 1;
395 tab1[fft_size_2].
im = 0;
396 for (i = 1; i < fft_size_2; i++) {
397 tab1[fft_size_2+i].
re = tab1[fft_size_2-i].
re;
398 tab1[fft_size_2+i].
im = -tab1[fft_size_2-i].
im;
401 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
402 tab2[1] = tab1[fft_size_2].
re;
405 fft_ref(tab_ref, tab1, fft_nbits);
406 for (i = 0; i < fft_size; i++) {
410 err =
check_diff((
float *)tab_ref, (
float *)tab, fft_size * 2, 0.5);
412 for (i = 0; i < fft_size; i++) {
413 tab2[i] = tab1[i].
re;
417 fft_ref(tab_ref, tab1, fft_nbits);
418 tab_ref[0].
im = tab_ref[fft_size_2].
re;
419 err =
check_diff((
float *)tab_ref, (
float *)tab2, fft_size, 1.0);
425 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
428 idct_ref(tab_ref, tab1, fft_nbits);
430 dct_ref(tab_ref, tab1, fft_nbits);
432 err =
check_diff((
float *)tab_ref, (
float *)tab, fft_size, 1.0);
449 for (it = 0; it < nb_its; it++) {
459 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
464 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
468 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
475 if (duration >= 1000000)
480 (
double)duration / nb_its,
481 (
double)duration / 1000000.0,
av_cold void ff_rdft_end(RDFTContext *s)
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
void(* dct_calc)(struct DCTContext *s, FFTSample *data)
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
void av_set_cpu_flags_mask(int mask)
Set a mask on flags returned by av_get_cpu_flags().
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
int av_parse_cpu_flags(const char *s)
Parse CPU flags from a string.
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
static FFTSample frandom(AVLFG *prng)
void av_log(void *avcl, int level, const char *fmt,...)
void(* rdft_calc)(struct RDFTContext *s, FFTSample *z)
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
static void fft_ref_init(int nbits, int inverse)
#define CMAC(pre, pim, are, aim, bre, bim)
int64_t av_gettime(void)
Get the current time in microseconds.
#define REF_SCALE(x, bits)
static int getopt(int argc, char *argv[], char *opts)
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
Set up DCT.
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
static const uint16_t scale[4]
int main(int argc, char **argv)
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
av_cold void ff_dct_end(DCTContext *s)
static const struct twinvq_data tab
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
Set up a real FFT.