Ruby Rules® for Bazel

Yuki (Yugui) Sonoda, Konstantin Gredeskoul & Contributors.

Table of Contents

1. Build Status & Activity
2. Rules Development Status
3. Table of Contents
4. Usage
4.1. WORKSPACE File
4.1.1. Load dependencies, select Ruby SDK and define one or more Bundles
4.2. BUILD.bazel file(s)
4.2.1. Define Ruby Executable, Library and an RSpec
4.2.2. Package Ruby files as a Gem

4.3. Tool Specific Setup
4.3.1. ASDF
4.4. Rule Dependency Diagram

5. Rules

5.1. ruby_library
5.2. ruby_binary
5.3. ruby_test
5.4. ruby_bundle
5.4.1. Conventions
5.4.2. WORKSPACE:
Vendor directory handling
5.4.3. BUILD.bazel:
5.5. ruby_rspec
5.6. ruby_gem

6. Potential Future Features
7. Contributing

7.1. Setup
7.1.1. Using the Script
7.1.2. OS-Specific Setup
7.2. Verifying Your Environment
7.2.1. Issues During Setup
7.3. Developing Rules
7.4. Running Tests
7.4.1. Test Script
7.5. Linter

7.6. Regenerating README.pdf & Changelog
8. Copyright

© 00 00 31 o O U1 U1 U1 b W N

DN DN DN DN DN DN DN DN DN DN DN DNMNDN PR B B 2B 2 2R ===
Gl b W W W N DN NN R R =20 39 o 0 a1 U1 U1 W N = O O

This repo is primarily maintained by Konstantin Gredeskoul and Yuki "Yugui" Sonoda. We are
both very busy and would really love more contributors to join the core team. If you are
interested in developing Ruby Rules for Bazel, please submit a couple of PRs and then lets talk!

@ You can read or print this README in a proper PDF format by grabbing our
w README.pdf.

https://github.com/kigster
https://github.com/yugui
README.pdf

Chapter 1. Build Status & Activity

CI Status
[CircleCI]
[Build Status]

Activity & Documentation
[activity]

<img
src="/var/folders/jq/853fg3814rs6xx_zxk9sgsv40000gn/T/image-20211109-
66422-mtnk4u" format="" alt="changelog" width="0"> <img
src="/var/folders/jq/853fg3814rs6xx_zxk9sgsv40000gn/T/image-20211109-
66422-6g8jtw" format="" alt="readme.pdf" width="0">

https://circleci.com/gh/bazelruby/rules_ruby
https://travis-ci.org/bazelruby/rules_ruby

Chapter 2. Rules Development Status

Readiness Types of Applications

D

SLCISICTENEDY ruby apps, ruby gems, micro-services, ideally in a mono-repo

medium-sized Ruby on Rails apps, ideally in a mono-repo
PEVEILINEIMESICHISRTERE complex Ruby on Rails monoliths, single-repo

o we have a short guide on Building your first Ruby Project on the Wiki. We
encourage you to check it out.

https://github.com/bazelruby/rules_ruby/wiki/Build-your-ruby-project

Chapter 3. Table of Contents

* Ruby Rules® for Bazel Build System
o Build Status & Activity
o Rules Development Status
o Table of Contents
o Usage
= WORKSPACE File
= BUILD.bazel file(s) * Tool Specific Setup * Rule Dependency Diagram
> Rules
= ruby_Tlibrary
= ruby_binary
= ruby_test
= ruby_bundle
= ruby_rspec
= ruby_gem
o Potential Future Features
o Contributing
= Setup
= Verifying Your Environment
= Developing Rules
= Running Tests
= Linter
= Regenerating README.pdf & Changelog

o Copyright

Chapter 4. Usage

4.1. WORKSPACE File

4.1.1. Load dependencies, select Ruby SDK and define one or more Bundles

workspace(name = "my_ruby_project")

load("@bazel_tools//tools/build_defs/repo:http.bz1", "http_archive")
load("@bazel_tools//tools/build_defs/repo:git.bz1", "qit_repository")

git_repository(
name = "bazelruby_rules_ruby",
remote = "https://github.com/bazelruby/rules_ruby.git",
branch = "master"”

)

load(
"@bazelruby_rules_ruby//ruby:deps.bzl",
"rules_ruby_dependencies",
“rules_ruby_select_sdk",

)

rules_ruby_dependencies()

load("@bazel_skylib//:workspace.bz1", "bazel_skylib_workspace")
bazel_skylib_workspace()

rules_ruby_select_sdk(version = "3.0.2")

load(
"@bazelruby_rules_ruby//ruby:defs.bz1",
"ruby_bundle",

name = "bundle",

includes = {
"grpc": ["etc"],

iy
excludes = {

"mini_portile": ["test/**/*"],
}
gemfile = "//:Gemfile",
gemfile_lock = "//:Gemfile.lock",

ruby_bundle(
name = "bundle_app_shopping",
gemfile = "//:apps/shopping/Gemfile",
gemfile_lock = "//:apps/shopping/Gemfile.lock",

ruby_bundle(
name = "bundle_gemspec",
srcs = ["//:1ib/my_gem/my_gem.gemspec"],
gemfile = "//:1ib/my_gem/Gemfile",
gemfile_lock = "//:1ib/my_gem/Gemfile.lock",

4.2. BUILD.bazel file(s)

Any of the project BUILD files can now reference any gems included in the Gemfile referenced by the
ruby_bundle rule, and defined in the project’s WORKSPACE file.

4.2.1. Define Ruby Executable, Library and an RSpec

Add ruby_library, ruby_binary, ruby_rspec or ruby_test into your BUILD.bazel files.

load(
"@bazelruby_rules_ruby//ruby:defs.bz1",
“ruby_binary",
“ruby_library",
"ruby_test",
"ruby_rspec",

)

ruby_library(
name = "foo",
sres = glob(["lib/**/*.rb"]),
includes = ["1ib"],
deps = [
"@bundle//:activesupport”,
"@bundle//:awesome_print",
"@bundle//:rubocop"”,
]
)

ruby_binary(
name = "bar",
srcs = ["bin/bar"],
deps = [":fo0"],

)

ruby_test(
name = "foo-test",
srcs = ["test/foo_test.rb"],
deps = [":fo0"],

)

ruby_rspec(
name = "foo-spec”,
specs = glob(["spec/**/*.rb"]),
rspec_args = { "--format": "progress" },
deps = [":fo0"]

4.2.2. Package Ruby files as a Gem

Use ruby_gem rule to package any number of ruby files or folders into a Ruby-Gem compatible ZIP
archive.

load(
"@bazelruby_rules_ruby//ruby:defs.bz1",
“ruby_gem",

)

ruby_gem(
name "awesome-sauce-gem",
gem_name "awesome-sauce",
gem_version "0.1.0",
gem_summary "Example gem to demonstrate Bazel Gem packaging",
gem_description = "Example gem to demonstrate Bazel Gem packaging",
gem_homepage "https://github.com/bazelruby/rules_ruby",
gem_authors [
"BazelRuby",
"Konstantin Gredeskoul"
I
gem_author_emails = [
"bazelruby@googlegroups.com”,
1,
gem_runtime_dependencies = {
"colored2": "~> 3.1.2",
"hashie": "",
i
gem_development_dependencies = {
"rspec": "",
"rspec-its": "",

"rubocop": "",
I
srcs = [
glob("{bin,exe,1ib, spec}/**/*.rb")
1,
deps = [
"//lib:example_gem",
1,

4.3. Tool Specific Setup

4.3.1. ASDF

If you are using ASDF to manage your ruby installs, you can use them by adding .bazelrc:

build --test_env=ASDF DIR --test env=ASDF _DATA_DIR
build --action_env=ASDF_DIR --test_env=ASDF_DATA_DIR

You will have to be sure to export the ASDF_DATA_DIR in your profile since it’s not set by default. e.g.
export ASDF_DATA_DIR="$HOME/.asdf"

4.4. Rule Dependency Diagram

The following diagram attempts to capture the implementation behind ruby_library that depends

this diagram is somewhat outdated.

on the result of bundle install, and a ruby_binary that depends on both:

repository rule

bundle_install
name = “foo-lib-bundle”

[genfile = “//tools/ruby/Genfile” }

-~

uses pre-made

build_rule

ruby_library
name = “foo-lib”

srcs = [glob(“Lib/**/*.rb”)]

deps = [“@//foo-1lib-bundle”]

depends on

|G

adds to LOAD_PATH

build_rule
ruby_binary ‘
name = “foo-bin”
[srcs = [“bin/foo-cli”]
[includes = [‘lib’, ‘app’]]

deps = [“:foo-1ib”, “@//foo-lib-bundle”]]

depends on

symlinks or copies

A4 A4

vendor/bundle/**/lib/*.rb

bundle install —deployment —path
vendor/bundle

symlinks

creates
symlinks

\ 4

tib/**/*/rb
app/**/*rb

\ 4

{ $LOAD_PATH << [lib’, ‘app’]

Ruby files are symlinked, include list is appended to the
$LOAD_PATH

adds to LOAD_PATH

\ 4

bin/foo-cli

Ruby executable is now symlinked as well.

Ruby Bazell Rules, their actions and dependencies

Chapter 5. Rules

5.1. ruby_library

ruby_library(

name,
deps,
srcs,
data,
compatible_with,
deprecation,
distribs,
features,
licenses,
restricted to,
tags,
testonly,
toolchains,
visibility)
Attributes
name Name, required
A unique name for this rule.
srcs List of Labels, optional
List of .rb files.
At least srcs or deps must be present
deps List of labels, optional
List of targets that are required by the srcs Ruby files.
At least srcs or deps must be present
includes List of strings, optional
List of paths to be added to $LOAD_PATH at runtime. The paths must be relative to the
the workspace which this rule belongs to.
rubyopt List of strings, optional

List of options to be passed to the Ruby interpreter at runtime.

0 -1 option should usually go to includes attribute.

10

Attributes

And other common attributes.

5.2. ruby_binary

ruby_binary(

name,
deps,

srcs,

data,

LRI
compatible_with,
deprecation,
distribs,
features,
licenses,
restricted_to,
tags,

testonly,
toolchains,
visibility,
args,
output_licenses

Attributes

name

Srcs

deps

main

Name, required

A unique name for this rule.

List of Labels, required

List of . rb files.

List of labels, optional

List of targets that are required by the srcs Ruby files.

Label, optional

The entrypoint file. It must be also in srecs.

If not specified, $(NAME) .rb where $(NAME) is the name of this rule.

11

https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

Attributes

includes List of strings, optional

List of paths to be added to $LOAD_PATH at runtime. The paths must be relative to the
the workspace which this rule belongs to.

rubyopt List of strings, optional

List of options to be passed to the Ruby interpreter at runtime.

o -I option should usually go to includes attribute.

And other common attributes.

5.3. ruby_test

ruby_test(
name,
deps,
srcs,
data,
ER
compatible_with,
deprecation,
distribs,
features,
licenses,
restricted_to,
tags,
testonly,
toolchains,
visibility,
args,
size,
timeout,
flaky,
local,
shard_count

Attributes

name Name, required

A unique name for this rule.

12

https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

Attributes

Srcs List of Labels, required

List of . rb files.

deps List of labels, optional

List of targets that are required by the srcs Ruby files.

main Label, optional

The entrypoint file. It must be also in srcs.

If not specified, $(NAME) .rb where $(NAME) is the name of this rule.

includes List of strings, optional

List of paths to be added to $LOAD_PATH at runtime. The paths must be relative to the
the workspace which this rule belongs to.

rubyopt List of strings, optional

List of options to be passed to the Ruby interpreter at runtime.

o -I option should usually go to includes attribute.

And other common attributes.

5.4. ruby_bundle

NOTE: This is a repository rule, and can only be used in a WORKSPACE file.

This rule installs gems defined in a Gemfile using Bundler, and exports individual gems from the
bundle, as well as the entire bundle, available as a ruby_library that can be depended upon from
other targets.

ruby_bundle(
name,
gemfile,
gemfile_lock,
bundler _version = "2.1.4",
includes = {},

excludes = {},

srcs = [,

vendor_cache = False,

ruby_sdk = "@org_ruby_lang_ruby_toolchain",
ruby_interpreter = "@org_ruby_lang_ruby_toolchain//:ruby",

13

https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

Attributes

name

gemfile

gemfile_lock

Srcs

vendor_cache

bundler_versi
on

includes

excludes

Name, required

A unique name for this rule.

Label, required

The Gemfile which Bundler runs with.

Label, optional

The Gemfile.lock which Bundler runs with.

o This rule never updates the Gemfile.lock. It is your responsibility
to generate/update Gemfile.lock
List of Labels, optional

List of additional files required for Bundler to install gems. This could usually
include *.gemspec files.

Bool, optional

Symlink the vendor directory into the Bazel build space, this allows Bundler to
access vendored Gems

String, optional

The Version of Bundler to use. Defaults to 2.1.4.

0 This rule never updates the Gemfile.lock. It is your responsibility
to generate/update Gemfile.lock

Dictionary of key-value-pairs (key: string, value: list of strings), optional

List of glob patterns per gem to be additionally loaded from the library. Keys are
the names of the gems which require some file/directory paths not listed in the
require_paths attribute of the gemspecs to be also added to $LOAD_PATH at runtime.
Values are lists of blob path patterns, which are relative to the root directories of
the gems.

Dictionary of key-value-pairs (key: string, value: list of strings), optional

List of glob patterns per gem to be excluded from the library. Keys are the names of
the gems. Values are lists of blob path patterns, which are relative to the root
directories of the gems. The default valueis ["/* .", "/* /"]

And other common attributes.

14

https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

5.4.1. Conventions

ruby_bundle creates several targets that can be used downstream. In the examples below we assume
that your ruby_bundle has a name app_bundle:

* @app_bundle//:bundler —references just the Bundler from the bundle.

* @app_bundle//:gems —references all gems in the bundle (i.e. "the entire bundle").

@app_bundle//:gem-name —references just the specified gem in the Dbundle, eg.
@app_bundle//:awesome_print.

» @app_bundle//:bin—references to all installed executables from this bundle, with individual
executables accessible via eg. @app_bundle//:bin/rubocop

5.4.2. WORKSPACE:

load("@bazelruby_rules_ruby//ruby:defs.bz1", "ruby_bundle")

ruby_bundle(
name = "gems",

bundler _version = '2.1.4",
gemfile = "//:Gemfile",
gemfile_lock = "//:Gemfile.lock",

Vendor directory handling

To use the vendor cache, you have to declare a managed_directory in your workspace. The name
should match the name of the bundle.

load("@bazelruby_rules_ruby//ruby:defs.bz1", "ruby_bundle")

workspace(
name = "my_wksp",
managed_directories = {"@bundle": ["vendor"]},

)

ruby_bundle(
name = "bundle",
bundler_version = "2.1.2",
vendor_cache = True,
gemfile = "//:Gemfile",
gemfile_lock = "//:Gemfile.lock",

5.4.3. BUILD.bazel:

15

ruby_library(
name = "foo",
srcs = ["foo.rb"],
deps = ["@gems//:gems"],

ruby_binary(
name = "rubocop"”,
srcs = [":foo", ".rubocop.yml"],
args = ["-P", "-D", "-c" ".rubocop.yml"],
main = "@gems//:bin/rubocop"”,
deps = ["@gems//:rubocop"],

5.5. ruby_rspec

ruby_rspec(
name,
deps,
srcs,
data,
ER
rspec_args,
bundle,
compatible_with,
deprecation,
distribs,
features,
licenses,
restricted_to,
tags,
testonly,
toolchains,
visibility,
args,
size,
timeout,
flaky,
local,
shard_count

Attributes

name

Srcs

deps

main

rspec_args

includes

rubyopt

Name, required

A unique name for this rule.

List of Labels, required

List of . rb files.

List of labels, optional

List of targets that are required by the srcs Ruby files.

Label, optional

The entrypoint file. It must be also in sres.

If not specified, $(NAME) .rb where $(NAME) is the name of this rule.

List of strings, optional
Command line arguments to the rspec binary, eg ["--progress", "-p2", "-b"]

If not specified, the default arguments defined in constants.bzl are used:
--format=documentation --force-color.

List of strings, optional

List of paths to be added to $LOAD_PATH at runtime. The paths must be relative to the
the workspace which this rule belongs to.

List of strings, optional

List of options to be passed to the Ruby interpreter at runtime.

o -1 option should usually go to includes attribute.

And other common attributes.

5.6. ruby_gem

Used to generate a zipped gem containing its srcs, dependencies and a gemspec.

17

https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

ruby_gem(
name,
gem_name,
gem_version,
gem_summary,
gem_description,
gem_homepage,
gem_authors,

gem_author_emails,
gem_runtime_dependencies,
gem_development_dependencies,
require_paths = ["1ib"],

Srcs = srcs,

deps = deps,

data = data

Attributes
name Name, required

A unique name for this build target.
gem_name Name of the gem, required

The name of the gem to be generated.

gem_version String, optional

The version of the gem. Is used to name the output file, which becomes name-
version.zip, and also included in the Gemspec.

gem_summary String, optional

One line summary of the gem purpose.

gem_descripti String, required
on
Single-line, paragraph-sized description text for the gem.

gem_homepage String, optional

Homepage URL of the gem.

gem_authors List of Strings, required

List of human readable names of the gem authors. Required to generate a valid
gemspec.

18

Attributes

gem_author_em List of Strings, optional

e List of email addresses of the authors.
srcs List of Labels, optional

List of .rb files.

At least srcs or deps must be present
deps List of labels, optional

List of targets that are required by the srcs Ruby files.

At least srcs or deps must be present

require_paths List of Strings, optional

List of paths to be added to the Ruby LOAD_PATH when using this gem. Typically
this value is just 1ib (which is also the default).

gem_runtime_d String Dictionary, optional
ependencies
This is a dictionary where keys are gem names, and values are either an empty

string or a gem version specification. For instance, the pessimistic version specifier
~> 3.0 means that all versions up to 4.0 are accepted.

gem_developme String Dictionary, optional
nt_dependenci
es Similar to the above, this specifies gems necessary for the development of the

above gem, such as testing gems, linters, code coverage and more.

And other common attributes.

19

https://www.devalot.com/articles/2012/04/gem-versions.html
https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

Chapter 6. Potential Future Features

Using various versions of Ruby installed locally
J Building native extensions in gems with Bazel

O Releasing your gems with Bazel (Coinbase fork might have this feature, worth checking)

20

https://github.com/coinbase/rules_ruby

Chapter 7. Contributing

We welcome contributions to RulesRuby. Please make yourself familiar with the code of conduct,
which basically says —don’t be an a-hole.

You may notice that there is more than one Bazel WORKSPACE inside this repo. There is one in
examples/simple_script for instance, because we use this example to validate and test the rules. So
be mindful whether your current directory contains WORKSPACE file or not.

7.1. Setup

7.1.1. Using the Script

You will need Homebrew installed prior to running the script.

After that, cd into the top level folder and run the setup script in your Terminal:

This runs a complete setup, shouldn’t take too long. You can explore various script options with the
help command:

0 bin/setup -h
USAGE

bin/setup

bin/setup [gems | git-hook | help | main | os-specific | rbenv | remove-git-hook]

DESCRIPTION:
Runs full setup without any arquments.

Accepts one optional argument — one of the actions that typically run
as part of setup, with one exception — remove-git-hook.
This action removes the git commit hook installed by the setup.

EXAMPLES:
bin/setup

Or, to run only one of the sub-functions (actions), pass
it as an argument:

bin/setup help
bin/setup remove-git-hook

21

CODE_OF_CONDUCT.pdf

7.1.2. OS-Specific Setup

Note that the setup contains os-specific section. This is because there are two extension scripts:

* bin/setup-linux

* bin/setup-darwin

Those will install Bazel and everything else you need on either platform. In fact, we use the linux
version on CI.

7.2. Veritying Your Environment

We provided a handy script bin/show-env to display where your dependencies are coming from.
Here is an example of running it on a Mac OS-X system:

0 bin/show-env

Your Current Runtime Environment:

RULES_RUBY :

BAZEL :
BAZELISK :
BASH :
[

60 :

RUBY :
RBENV :
RUBIES :

PYTHON :
PYTHONZ :
PYTHON3 :

7.2.1. Issues During Setup

Please report any errors to bin/setup as Issues on Github. You can assign
them to @kigster. If I am not responding fast enough, and you are in a
hurry, please email kigster AT gmail directly.

7.3. Developing Rules

Besides making yourself familiar with the existing code, and Bazel documentation on writing rules,
you might want to follow this order:

1. Setup dev tools as described in the setup section.
2. hack, hack, hack...

3. Make sure all tests pass— you can run a single command for that (but see more on it below.

bin/test-suite

22

https://docs.bazel.build/versions/master/skylark/concepts.html

OR, you can run individual Bazel test commands from the inside.

* bazel test //--
* cd examples/simple_script && bazel test //:-

1. Open a pull request in Github, and please be as verbose as possible in your description.

In general, it’s always a good idea to ask questions first — you can do so by creating an issue.

7.4. Running Tests

After running setup, and since this is a bazel repo you can use Bazel commands:

bazel build //...:3ll

bazel query //...:all
bazel test //...:all

But to run tests inside each sub-WORKSPACE, you will need to repeat that in each sub-folder.
Luckily, there is a better way.

7.4.1. Test Script

This script runs all tests (including sub-workspaces) when ran without arguments:

bin/test-suite

Run it with help command to see other options, and to see what parts you can run individually. At
the moment they are:

bin/test-suite [all | bazel-info | buildifier | help | rspec | rubocop | simple-
script | workspace]

On a MacBook Pro it takes about 3 minutes to run.

7.5. Linter

We are using RuboCop for ruby and Buildifier for Bazel. Both are represented by a single script
bin/linter, which just like the scripts above runs ALL linters when ran without arguments, accepts
help commnd, and can be run on a subset of linting strategies:

bin/linter

The following are the partial linting functions you can run:

23

bin/linter [all | buildifier | help | rubocop]

7.6. Regenerating README.pdf & Changelog

To regenerate, first you may need to grab an API token and export the GITHUB_TOKEN variable:

export GITHUB_TOKEN=....

Then use the make target:

make update

Or, manually:

gem install github_changelog_generator

github_changelog_generator -u bazelruby -p rules_ruby -t your-github-token

24

https://github.com/settings/tokens

Chapter 8. Copyright

© 2018-2021 BazelRuby Contributors.
Core Team:

* Yuki Yugui Sonoda

* Konstantin Gredeskoul
Core Team (Emeritus):
* Graham Jenson
Licensed under the Apache License, Version 2.0 (the "License").

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

25

https://github.com/yugui/
https://kig.re/
https://github.com/grahamjenson
http://www.apache.org/licenses/LICENSE-2.0

	Ruby Rules® for Bazel
	Table of Contents
	Chapter 1. Build Status & Activity
	Chapter 2. Rules Development Status
	Chapter 3. Table of Contents
	Chapter 4. Usage
	4.1. WORKSPACE File
	4.1.1. Load dependencies, select Ruby SDK and define one or more Bundles

	4.2. BUILD.bazel file(s)
	4.2.1. Define Ruby Executable, Library and an RSpec
	4.2.2. Package Ruby files as a Gem

	4.3. Tool Specific Setup
	4.3.1. ASDF

	4.4. Rule Dependency Diagram

	Chapter 5. Rules
	5.1. ruby_library
	5.2. ruby_binary
	5.3. ruby_test
	5.4. ruby_bundle
	5.4.1. Conventions
	5.4.2. WORKSPACE:
	Vendor directory handling

	5.4.3. BUILD.bazel:

	5.5. ruby_rspec
	5.6. ruby_gem

	Chapter 6. Potential Future Features
	Chapter 7. Contributing
	7.1. Setup
	7.1.1. Using the Script
	7.1.2. OS-Specific Setup

	7.2. Verifying Your Environment
	7.2.1. Issues During Setup

	7.3. Developing Rules
	7.4. Running Tests
	7.4.1. Test Script

	7.5. Linter
	7.6. Regenerating README.pdf & Changelog

	Chapter 8. Copyright

